ASD Rue du Château (33 (0)3.24.59.41.91
Alu Soudure Diffusion 08460 LALOBBE Fax 33 (0)3.24.59.01.97

EDITE LE: 23/10/2017

 Réf. : 02217-NC1/

 Affaire N° 02217
 Nom : S.C.
 Date : 23.10.17
 Feuille : 1/13

 Indice : Nom : S.C

 NOTE DE CALCULS

 STRUCTURE STP500 (50x3)

• Données:

Matières :

* Tube membrure Ø 50 ep 3 σe alu 6005-T6 = 26 daN/mm²

Module d'élasticité E = 7950 daN/mm²

* Goupilles coniques σe S300pb = 38 daN/mm²

* Moyeu male-male

Ge Alu 6060-T5 = 19 daN/mm²

*Tube treillis $\emptyset 30$ ep 3 oe alu 6106-T6 = 20 daN/mm²

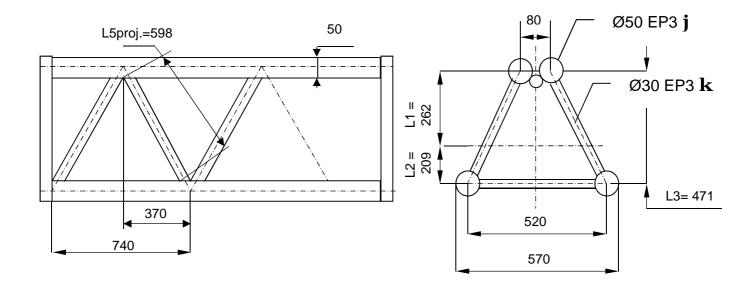
E=6950 daN/mm²

* Manchon femelle membrures σe alu 2030-T3 = 39 daN/mm²

- Hypothèses de calcul :

- Aucun défaut de fabrication n'est admis.
- Soudures de la structure réalisées par un opérateur certifié.
- Poids propre des structures pris en compte. (10.8 daN/ml)
- Goupilles coniques emmanchées au maillet (pas au marteau)
- Exploitation exclusivement pointe en haut.

But :


Déterminer les charges centrées et réparties maximum admissibles en fonction de la longueur et du taux de flèche.

Affaire N° 02217 Nom: Date: Feuille: 2/13

NOTE DE CALCULS (suite)

STRUCTURE STP500 (50x3)

Fig 1:

• Calcul du lxx₁ du tube j :

- Dimensions: Ø50x3

-
$$Ixx_1 = \frac{p}{64} \times \left(D^4 - d^4\right)$$

 $Ixx_1 = \frac{p}{64} \times \left(50^4 - 44^4\right) = 112 812 \text{ mm}^4$

$$- \frac{I_{XX_1}}{V} = \frac{I_{XX_1}}{D/2} = \frac{112812}{25} = 4 \ 912 \ \text{mm}^3$$

STRUCTURE STP500 (50x3)

• Calcul de la section du tube j :

- Section : S1 =
$$p \times \left(R^2 - r^2\right) = p \times \left(25^2 - 22^2\right) = 443 \text{ mm}^2$$

• Calcul du lxx de la structure assemblée :

-
$$Ixx = 2 \left[Ixx_1 + \left(S1 \times L1^2 \right) \right] + 2 \left[Ixx_1 + \left(S1 \times L2^2 \right) \right]$$

 $Ixx = 2 \left[122812 + \left(443 \times 262^2 \right) \right] + 2 \left[122812 + \left(443 \times 209^2 \right) \right]$
 $Ixx = 9988\ 0425\ \text{mm}^4$

$$- \frac{Ixx}{V} = \frac{Ixx}{L1+D/2} = \frac{99880425}{262+25} = 348 \ 015 \ \text{mm}^3$$

- Résistance de la membrure supérieure à la compression (flambement) :
 - Rayon de giration :

$$i = \sqrt{\frac{I_{XXI}}{S1}} = \sqrt{\frac{122812}{443}} = 16.7 \text{ mm}$$

- Elancement maximum:

$$\lambda = \frac{L_F}{i} = \frac{740}{16.7} = 44 \rightarrow k0 = 1,39$$
 (suivant règles AL76)

STRUCTURE STP500 (50x3)

- Calcul de la force admissible par la tube j sur une membrure supérieure :

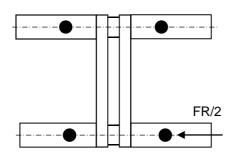
$$F_{\text{maxi}} = \frac{S1 \times \text{Re}}{ko.S} = \frac{443 \times 26}{1.39 \times 1.7} = 4874 \text{ daN}$$

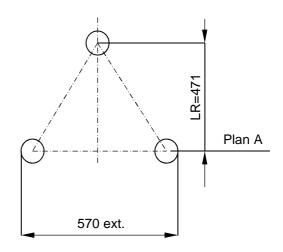
S= 1,7 (cœfficient de pondération charges d'exploitations règles AL76)

- <u>Calcul du Mf1_{maxi} respectant la limite au flambement pour (Mf1_{peh}) pour 2</u> membrures :

$$Mf1_{peh} = F_{maxi} \times L3 \times 2$$

$$Mf1_{peh} = 4874x 471 x2$$


$$Mf1_{peh} = 4 591 300 daN.mm$$


- Calcul du Mf2 maxi respectant la contrainte normale admissible totale :

Mf2 =
$$\frac{Se}{1.7}$$
. Ixx/v (1.7 = coefficient de pondération règles AL76)

$$Mf2 = \frac{26}{1.7} \times 348015$$

• Vérification des moyens de liaison :

• NOTA: Reprise des efforts horizontaux pour les tubes inférieurs négligés

STRUCTURE STP500 (50x3)

• Vérification des goupilles de fixation dans la plan A:

Goupilles coniques ø moyen = ø10.5

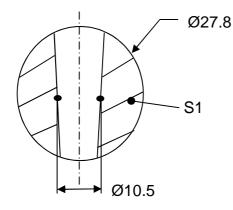
$$Rpg = \frac{38}{1.5} = 25.3 \text{ daN/mm}^2$$

Surface cisaillée : S = $\frac{p.D^2}{4} = \frac{p.10.5^2}{4} = 86.6 \text{ mm}^2$

• Condition de résistance des goupilles des manchons dans le plan A au cisaillement :

$$\sigma_{\text{maxi}} = \frac{F \max i}{S} \times \frac{1}{4} \text{ (Nb sections)} \leq \text{Rpg}$$

$$Fg_{maxi} \leq Rpg \times 4 \times S$$


$$Fg_{maxi} \le 25.3 \text{ x 4 x 86.6}$$

- Calcul du Mf3 maxi respectant la contrainte des goupilles :

$$Mf3 = Fg_{maxi} \times LR \text{ avec } LR=471$$

$$Mf3_{peh} = 4 127 373 daN.mm$$

• Résistance du moyeu male/male :

Alu 6060-T5

$$\sigma_e$$
 = 28daN/mm²

$$Rg = \frac{19}{1.7} = 11.2 \text{ daN/mm}^2$$

Affaire N° 02217	Nom:	Date :	Feuille : 6/13
	•	· · · · · · · · · · · · · · · · · · ·	·

STRUCTURE STP500 (50x3)

- Section en traction :

S1 =
$$\frac{p.d}{4}^2$$
-(Lxh)
S1 = $\frac{p.27.8^2}{4}$ -(27.8x10.5)
S1 = 315 mm²

$$\sigma_{\text{maxi}} = \frac{F_{MAX}}{S1} \times \frac{1}{2}$$
 (Nb sections)

$$Fm_{maxi} \le Rg x S1 x 2$$

$$Fm_{maxi} \le 11.2 \text{ x } 315 \text{ x } 2$$

- Calcul du Mf4 maxi respectant la contrainte des moyeux coniques :

$$Mf4 = Fm_{maxi} x LR avec LR=471$$

 $Mf4_{peh} = 3 315 840 daN.mm$

Affaire N° 02217	Nom:	Date :	Feuille : 7/13				
NOTE DE CALCULS (suite)							
STRUCTURE STP500 (50x3)							

 Résistance par essais de l'assemblage complet membrure, goupille, manchon, moyeu:

Pour des raisons de sécurité et d'autocontrôle, des essais de traction sont effectués plusieurs fois par an, pour s'assurer de la qualification dimensionnelle et de la matière utilisée.

Suivant le rapport du laboratoire FAN 120214 du 20/12/12, il en résulte qu'un assemblage complet d'une membrure en ø50x3 résiste à des efforts Fe de 3600daN et Fm de 6500daN, ce dernier provoquant la ruine du manchon conique.

Nous appliquerons une minoration de ces valeurs pour atteindre les coefficients de sécurités suivants :

Nous minorerons forfaitairement de 3600 à 2500daN aux ELS la valeur maxi pouvant être soumise à l'assemblage d'une membrure en relation également avec les essais d'épreuves réalisés par Socotec.

Le coefficient de pondération résultant de cette minoration est donc de 3600/2500= 1.44 au lieu de 1.7 (restant >à 1.25 pour un facteur de sécurité d'exploitation final).

Si nous majorons la valeur de 2500daN par 1.25 (un facteur de sécurité d'exploitation final) = 3125daN (<3600daN), nous restons dans le domaine élastique dans le cadre d'utilisation normale client.

Le coefficient de ruine se situant lui à 6500/2500= 2.6

Contrôle du domaine de contrainte :

Si nous pondérons la valeur de 2500daN x1.7(AL76)= 4250daN, nous restons << Fm=6500daN donc dans le domaine plastique de la matière aux ELU.

Si nous restons aux ELU dans le domaine plastique, un moment fléchissant Mf5_{peh} de 2500x2x0.471= 2355 daN.m aux ELS, ne peut donc provoquer la ruine des assemblages de membrures de la structure.

Nous retiendrons donc la valeur de :

 $Mf5_{peh} = 2355\,000\,daN.mm$

Mf5 étant le plus petit, donc le plus défavorable des moments fléchissants, nous retiendrons celui-ci pour la suite des calculs.

STRUCTURE STP500 (50x3)

Effort maxi applicable au treillis à la compression (flambement) :

- Calcul du lxx2 du tube k :

- Dimensions: Ø30x3

-
$$Ixx_2 = \frac{p}{64} \times \left(D^4 - d^4 \right)$$

 $Ixx_1 = \frac{p}{64} \times \left(30^4 - 24^4 \right) = 23 475 \text{ mm}^4$

$$- \frac{Ixx_2}{V} = \frac{Ixx_2}{D/2} = \frac{23475}{15} = 1565 \text{ mm}^3$$

- Calcul de la section du tube k :

- Section : S2 =
$$p \times \left(R^2 - r^2\right) = p \times \left(15^2 - 12^2\right) = 254 \text{ mm}^2$$

- Résistance du treillis au flambement :
 - Rayon de giration :

$$i = \sqrt{\frac{I_{XX2}}{S2}} = \sqrt{\frac{23475}{254}} = 9.6 \text{ mm}$$

- Elancement maximum:

$$\lambda = \frac{L5}{i} = \frac{598}{9.6} = 62$$

- Elancement critique Eulérien :

$$\lambda_{K} = p \sqrt{\frac{E}{\text{Re}}} = p \sqrt{\frac{6950}{20}} = 59$$

Affaire N° 02217	Nom:	Date :	Feuille : 9/13				
NOTE DE CALCULO ('t)							

STRUCTURE STP500 (50x3)

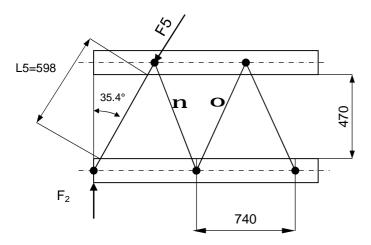
- Elancement réduit :

$$\overline{lk} = \frac{1}{lk} = \frac{62}{59} = 1.06 > 0.2$$
 risque de flambement

Suivant la formule AL76 :

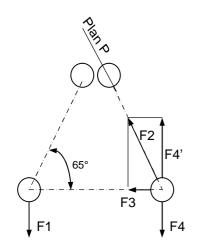
$$\overline{lk}$$
 = 1.06 \Rightarrow coefficient k_0 = 1.79

- Calcul de la force admissible par la tube j sur membrure supérieure :


$$F5_{\text{maxi}} = \frac{S2 \times Re}{koxs} = \frac{254 \times 20}{1.79x1.7} = 1670 \text{ daN}$$

s=ponderation AL76

 $F5_{maxi} = 1670 daN$


Affaire N° 02217	Nom:	Date :	Feuille : 10/13					
NOTE DE CALCULS (suite)								
5	STRUCTURE STP500 (50x3)							

- <u>Détermination de l'effor tranchant maximum applicable à la structure :</u>
 - Projection dans la plan P :

Les barres les plus sollicitées sont ${f n}$ et ${f o}$

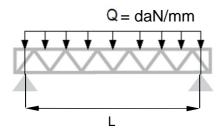
 $F_2 = F5.\cos a = 1670.\cos 35.4^\circ = 1361 \text{ daN}$

F1= F4= F2.sin65°= 1361.sin 65°= 1233daN

Fmax ou Qmax = 4xF1 = 4x1233 = 4933 daN

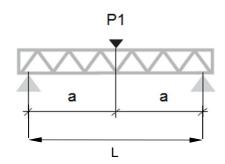
<u>La charge maximum applicable à la structure sera donc</u> ≤ <u>à 4933daN</u>

STRUCTURE STP500 (50x3)

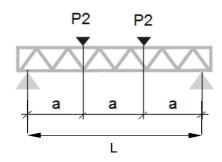

Résumé des résultats intermédiaires :

 $E = 7950 \text{ daN/mm}^2$ $Ixx = 9988 \text{ cm}^4$ $Mf5_{peh} = 2355 \text{ daN.m}$ Pmax = 4933 daN

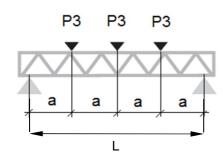
Poids propre moyen: 10.8daN/ml


 $Tf = 1/150^{e}$

A) Charge uniformément répartie admissible :


QMf=
$$\frac{Mf \times 8}{L^2}$$
 et Qf = $\frac{L.Tf.384.E.Ixx}{5.L^4}$

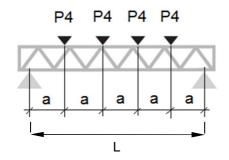
B) Charge ponctuelle P1 centrée admissible:


$$P1Mf = \frac{Mf.4}{L} \text{ et P1f} = \frac{L.Tf.48.E.Ixx}{L^3}$$

C) Charge ponctuelle P2 maxi pour de 2 points uniformément espacés:

P2Mf=
$$\frac{Mf.3}{L}$$
 et P2f= $\frac{L.Tf.648.E.Ixx}{23.L^3}$

D) Charge ponctuelle P3 maxi pour de 3 points uniformément espacés:


P3Mf=
$$\frac{Mf.2}{L}$$
 et P3f= $\frac{L.Tf.384.E.Ixx}{19.L^3}$

Affaire N° 02217 Nom: Date: Feuille: 12/13

NOTE DE CALCULS (suite)

STRUCTURE STP500 (50x3)

D) Charge ponctuelle P4 maxi pour de 4 points uniformément espacés:

P4Mf=
$$\frac{Mf.5}{3.L}$$
 et P3f= $\frac{L.Tf.1000.E.Lxx}{63.L^3}$

Résultantes de charges en fonction de la portée L en position pointe en haut:

poids propre	10.8	daN/ml																
Mf max	2355	daN.m			STRUCTUR	RE TRIANGULAIRE POINTE	EN HAUT											
inertie	9988	cm4																
pmax																		
(2*tranchant treillis)	4933	daN																
	P1 limité p	oar (daN)	P2 limite	é par (daN)	P3	limité par (daN)		iité par aN)			au 1	l/150e		Portée		au 1	/150e	
L(m)	mf max	1/150	mf max	1/150	mf max	1/150	mf max	1/150	T limite treillis daN	D1may	D2may	D2may	P4max	L(m)	P1max	D?may	P3max	P4max
2.4	3925	44114	2944	25893	1963	18574	1635	14588	4933	3925	2466	1644	1233	2.4	3899	2453	1636	1227
3.6	2617	19606				8255	1090	6484	4933	2617	1963	1308	1090	3.6	2578	1943	1295	1081
4.8	1963	11028	1472	6473	981	4644	818	3647	4933	1963	1472	981	818	4.8	1911	1446	964	805
6	1570	7058					654	2334	4933	1570	1178	785	654	6	1505	1145	763	638
7.2	1308	4902	981	2877	654	2064	545	1621	4933	1308	981	654	545	7.2	1231	942	628	526
8.4	1121	3601	841	2114		1516	467	1191	4933	1121	841	561	467	8.4	1031	796	530	445
9.6	981	2757	736	1618	491	1161	409	912	4933	981	736	491	409	9.6	878	684	456	383
10.8	872	2178	654	1279	436	917	363	720	4933	872	654	436	363	10.8	756	596	397	334
12	785	1765	589	1036	393	743	327	584	4933	785	589	393	327	12	655	524	349	295
13.2	714	1458	535	856	357	614	297	482	4933	714	535	357	297	13.2	571	464	309	262
14.4	654	1225	491	719	327	516	273	405	4933	654	491	327	273	14.4	499	413	275	234
15.6	604	1044	453	613	302	440	252	345	4933	604	453	302	252	15.6	435	369	246	209
16.8	561	900	421	528	280	379	234	298	4933	561	421	280	234	16.8	379	330	220	188
18	523	784	393	460	262	330	218	259	4933	523	393	262	218	18	329	295	197	169
19.2	491	689				290	204	228	4933	491	368	245	204	19.2	283	264	176	153
20.4	462	611	346	358	231	257	192	202	4933	462	346	231	192	20.4	241	236	157	137
21.6	436	545		320		229	182	180	4933	436	320	218	180	21.6	203	203	140	122
22.8	413	489			207	206	172	162	4933	413	287	206	162	22.8	167	164	124	100
24	393	441	294			186	164	146	4933	393	259	186	146	24	133	129	99	81
25.2	374	400	280	235	187	168	156	132	4933	374	235	168	132	25.2	102	99	78	64

				Resulats
				sans
				poids
				propre
			Q limite	retiré
	Q limité pa	ar fleche	treillis	au 1/150e
L(m)	mf max	1/150	daN/ml	Qmax
2.4	3271	29409	2055	2055
3.6	1454	8714	1370	1370
4.8	818	3676	1028	818
6	523	1882	822	523
7.2	363	1089	685	363
8.4	267	686	587	267
9.6	204	460	514	204
10.8	162	323	457	162
12	131	235	411	131
13.2	108	177	374	108
14.4	91	136	343	91
15.6	77	107	316	77
16.8	67	86	294	67
18	58	70	274	58
19.2	51	57	257	51
20.4	45	48	242	45
21.6	40	40	228	40
22.8	36	34	216	34
24	33	29	206	29
25.2	30	25	196	25

Affaire N° 02217	Nom:	Date :	Feuille : 13/13					
NO	NOTE DE CALCULS (suite)							

STRUCTURE STP500 (50x3)

Conclusion:

Tableau de charges de service utiles maximales sur STP500 (50x3) Installée POINTE EN HAUT

Structure	STP 500 50x3	PEH						
Tour	de flèche maxi :	1/150	ème					
Taux (ue lieche maxi :		errie P1	P2 P2 -	P3 P3 P3	P4 P4 P4 P4		
			aa	a a a	aaaa	aaaaa		
		Q	P1	P2	P3	P4	SW	
				Charge	Charge	Charge		
				ponctuelle	ponctuelle	ponctuelle		
		Charge	Charge	maxi pour de 2	maxi pour de 3	maxi pour de 4	Poids propre	
		uniformément	ponctuelle P1	points	points	points	moyen de la	
	Fleche maxi	répartie	centrée	uniformément	uniformément	uniformément	structure	
Portée	tolérée	admissible	admissible	espacés	espacés	espacés	seule	
L(m)	mm 💌	kg/ml ▼	kg ▼	kg/pt2 ▼	kg/pt3 ▼	kg/pt4 ▼	kgs ▼	
2.4	16	2044	3899	2453	1636	1227	26	
3.6	24	1359	2578	1943	1295	1081	39	
4.8	32	807	1911	1446	964	805	52	
6	40	513	1505	1145	763	638	65	
7.2	48	353	1231	942	628 526		78	
8.4	56	256	1031	796	530	445	91	
9.6	64	194	878	684	456	383	104	
10.8	72	151	756	596	397	334	117	
12	80	120	655	524	349	295	130	
13.2	88	97	571	464	309	262	143	
14.4	96	80	499	413	275	234	156	
15.6	104	67	435	369	246	209	168	
16.8	112	56	379	330	220	188	181	
18	120	47	329	295	197	169	194	
19.2 20.4	128 136	40 34	283 241	264 236	176 157	153 137	207 220	
20.4	136	34 30	241	236	157	137	220	
21.0	144 152	30 24	203 167	203 164	124	100	233 246	
22.8	160	2 4 19	133	129	99	81	2 4 6 259	
25.2	168	15	102	99	78	64	272	